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Abstract—Estimating soil organic carbon (SOC) from satellite
imagery, particularly in areas with both bare soil and vegeta-
tion, poses significant challenges. Traditional approaches often
overlook the complex interactions between soil and vegetation.
Addressing this gap, our study introduces an innovative method
that leverages novel correction of hyperspectral reflections to
adjust for vegetation levels, enhancing SOC estimation accuracy.
Moreover, we propose an attention-based deep neural network
that dynamically prioritizes spectral features crucial for SOC
prediction. This mechanism significantly improves the model’s
ability to detect significant features for accurate SOC estimation.
Comparative experiments with traditional models on a bench-
mark dataset demonstrate our method’s effectiveness in reducing
vegetation influence and accurately estimating SOC across mixed
landscapes. Our findings represent a notable advancement in
SOC estimation from satellite imagery, highlighting the potential
of advanced learning-based techniques with attention-driven
feature weighting for SOC estimation.

Index Terms—Soil carbon estimation, LUCAS dataset, remote
sensing, attention-based deep learning, Landsat 8

I. INTRODUCTION

Soil organic carbon (SOC) is vital for agricultural pro-
ductivity and ecosystem health, yet traditional field sampling
methods are time-consuming and impractical for large-scale
analysis. Remote sensing, particularly lab-based hyperspectral
imaging (HSI), offers an efficient alternative for SOC esti-
mation, providing detailed spatial data that enables accurate
soil property analysis without direct sampling [1]. Machine
learning models leveraging HSI data have shown promising
results in SOC estimation [2], [3]. Despite HSI’s advantages,
its high cost and accessibility issues prompt some researchers
to explore visual band multispectral data, which also achieves
comparable SOC estimations at a lower cost [4]. HSI and
visual band cameras capture information in specific land por-
tions, leading researchers to focus on satellite image data for
large-scale SOC estimation, enabling nation-scale forecasts.

Multi-spectral satellite data like Sentinel 2 (S2) and Landsat
8 (L8) provide broad coverage and accessibility for SOC
estimation; however, they face challenges in accuracy com-
pared to hyperspectral data, primarily due to environmental
noise and the need for extensive pre-processing [5]–[8]. While

some studies have made progress in soil property mapping
using machine learning under varied agricultural practices,
they mainly focus on broad attributes without delving into the
nuanced relationship between bare and vegetated soil, relying
on traditional models [9]. Most research concentrates on bare
soil SOC estimation, with minimal vegetation cover signif-
icantly biasing reflectance characteristics in satellite images,
thus hindering accurate SOC estimations by learning-based
models [10].

This study focuses on estimating SOC in fields with vege-
tated crops, mainly on barley-covered lands. To the best of our
knowledge, this is the first time we have explored the reflection
relation from bare and barely vegetated crops, and learning-
based models have been introduced to estimate SOC levels.
The proposed approach begins by unveiling the reflection
characteristics of L8 satellite images, capturing various SOC
levels in both bare soil and barley-vegetated crops. Introducing
a correction coefficient derived from these reflections mitigates
the impact of vegetation on soil surfaces, enabling satisfactory
estimations by learning-based models. This study used the
publicly available Land Use and Coverage Area Body Survey
(LUCAS) 2018 dataset [11] and corresponding L8 satellite
images.

A number of learning-based models, such as random for-
est (RF), support vector regressor (SVR), CatBoost regres-
sor (CBR), and one-dimension convolution neural network
(1dCNN), commonly described in previous literature [2], [4],
have been used to analyze the estimation performance of SOC
from L8 reflectance data including different vegetation and
soil indices. Due to their inherent structures, RF and CBR
may face challenges capturing intricate spatial dependencies
and patterns within L8 data. SVR may struggle with satellite
data’s high-dimensional and complex nature, especially when
spatial relationships are pivotal. Although proficient in cap-
turing sequential patterns, 1dCNNs may only partially exploit
the inherent spatial relationships present in satellite images.
These limitations underscore the need for more advanced
approaches to comprehend better the nuanced spatial and
spectral characteristics inherent in satellite data for satisfactory



TABLE I
DESCRIPTIVE STATISTICAL PARAMETERS FOR THE SOC DATASET INVESTIGATED IN THE STUDY

Soil type NDVI range S. No. Min Max Mean Median Std. CV(%)
Bare soil 0 < NDV I < 0.25 378 2.2 29.9 12.57 11.60 6.35 50.51

Unhealthy Barley 0.25 < NDV I < 0.33 89 3.9 29.9 13.09 12.20 6.29 48.05
Moderate Healthy Barley 0.33 < NDV I < 0.66 201 2.5 29.5 14.10 12.80 6.56 46.52

Healthy Barley 0.66 < NDV I < 1 70 2.7 29.7 15.67 14.80 7.03 44.86
All Barley 0.25 < NDV I < 1 360 2.5 29.9 14.15 12.85 6.63 46.85

Bare soil + Barley 0 < NDV I < 1 738 2.2 29.9 13.34 12.30 6.53 48.95

SOC estimation.
To address the limitations of the conventional learning-based

models, this research also proposes an attention-based deep
neural network for estimating SOC from L8 data. This net-
work’s motivation is how humans selectively focus on specific
information when processing complex inputs. The purpose
of an attention layer is to specifically focus on different
input features, assigning different importance weights to each
element. This attention-based approach is expected to improve
the accuracy and robustness of SOC estimations, particularly
in areas with varying vegetation cover and environmental con-
ditions. Experimental results show that utilizing the proposed
attention-based deep neural network with proposed correction
coefficients can reduce vegetation impacts and estimate SOC
from barley-vegetated crops satisfactorily.

II. DATASET PREPARATION

In 2001, LUCAS was established by the Statistical Office
of the European Union (EUROSTAT) to create a comprehen-
sive pan-European database focused on landscape parameters
crucial for assessing agricultural and environmental coverage
[11]. The LUCAS 2018 database contains 18,984 soil sample
records across Europe. The LUCAS-SOIL-2018 CSV file
includes a unique identification code (PointID) and eight
corresponding soil properties: pH(CaCl2), pH(H2O), electrical
conductivity (EC), SOC, carbonate content (CaCO3), phos-
phorus (P), total nitrogen (N), extractable potassium (K). The
file named LUCAS-SOIL-2018.shp provides the theoretical
coordinates of the soil samples. For this analysis, we focus
on SOC for bare soil samples and barley vegetation at 0-20
cm depth. The statistical description of the considered dataset
is provided in Table I.

For satellite data, we utilized L8 imagery,
available through the USGS Earth Explorer website
(https://earthexplorer.usgs.gov/). Images corresponding to
the soil sample locations and dates within a 15-day window
and under 10% cloud cover were selected, covering 11 bands
as detailed in [12]. Although L8 covers 11 bands, only 7 bands
were considered for analysis due to their established relevance
to SOC estimation, as demonstrated in prior research [7].
The remaining four bands, which include thermal and cirrus
bands, were excluded because they are less pertinent to
SOC prediction and more suited to other applications such
as temperature measurement and atmospheric studies [13].
These images underwent radiometric calibration, atmospheric
correction, and pansharpening in ENVI software, following

published protocols [14]. Reflectance values were then
extracted via ArcGIS Pro for analysis.

III. PROPOSED CORRECTION COEFFICIENT

Remote sensing involves measuring the object’s reflectance
to understand the materials’ characteristics. This study divided
the dataset into six classes depending on the SOC range for
bare soil and barley vegetation. We also classify different
stages of barley depending on the NDVI indexing reported
in Table I for a better understanding of the reflection relation-
ships.

The average reflectance of the same class SOC for bare soil
and barley vegetated soil samples has been drawn in Fig. 1.
If the SOC values lie in the lower range, higher reflection is
noted, and vice versa. A noticeable pattern has been observed
from the reflectance of these four sub-figures, from bare to
vegetated soil. L8 reflectance has the most variation due to
the barley vegetation, especially from band four (B4) to band
seven (B7), on the top of the soil. Therefore, to estimate SOC
from satellite data, these vegetation effects need to be handled
before learning-based training.

A number of methods have been considered to minimize
the vegetation effect. First, we tried to apply linear regression
to minimize the vegetation impacts; however, this method did
not work satisfactorily as the data was not linearly separable,
especially for Fig. 1c. In the second step, the polynomial
regression curve fitting approach has been considered up to
four degrees of polynomial equations. This approach helps
capture the trend of complex data structures. However, this
method fails to differentiate the change from moderate to
healthy vegetation (Figs. 1c to 1d). This approach becomes
more complex and has a good chance of overfitting the data.

After observing those characteristics and minimizing the
complexity, a simple and straightforward approach that is more
suited to minimizing vegetation effects has been adopted. A
novel correction coefficient matrix has been proposed using a
difference model to minimize the vegetation effects on the top
of the soil from Equation 1.

Rb = Rv + ϵ (1)

where Rb and Rv are the average bare soil and vegetation
reflection, and ϵ is the correction coefficient, respectively.

According to Equation 1, our observations illustrated in Fig.
2 are considered correction coefficient matrices for different
stages of barley vegetation. After that, according to the SOC
range and vegetation scenario, the reflectance of seven bands



(a) Bare soil (b) Unhealthy barley

(c) Moderate healthy barley (d) Healthy barley

Fig. 1. Average reflection for bare soil and barley vegetation in different carbon range variation.

(a) Unhealthy barley (b) Moderate healthy barley (c) Healthy barley

Fig. 2. Correction coefficient for unhealthy, moderate healthy, and healthy barley vegetation.

of L8 has been updated according to the correction coefficient,
and vegetation impact has been minimized.

The proposed correction coefficient matrix values have six
different SOC classes and three vegetation scenarios, and the
NDVI index can only classify the condition of vegetation. That
may need to be clarified when choosing the proper correction
index. To address the issue of selecting the most appropriate
correction index for samples, the nearest bare soil location
within an image can be identified, and a learning-based model
can estimate the SOC values from bare soil and help choose
a proper correction index.

IV. PROPOSED ATTENTION-BASED NETWORK

Our proposed attention-based network, meticulously struc-
tured to process and interpret L8 satellite imagery for SOC

estimation, is specifically designed to tackle the intricacies of
SOC estimation. Utilizing an attention mechanism, the model
adeptly navigates the diverse data layers of L8 imagery, which
include multi-spectral imagery across seven bands, alongside
derived soil and vegetation indices and the TCT, each pro-
viding unique insights into the Earth’s surface. This approach
dynamically prioritizes features directly relevant to SOC con-
tent, enabling the identification and exploitation of crucial
spatial dependencies and subtle patterns often overlooked by
traditional methods. By concentrating on the most significant
features, our model aims to significantly enhance the accuracy
and interpretability of SOC predictions, establishing a new
benchmark for satellite-based SOC estimation techniques, as
illustrated in Fig. 3 and the network architecture unfolds as
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Fig. 3. Schematic representation of the proposed attention mechanism in the neural network architecture.

follows:
Input Layer: This initial layer receives the L8 reflectance

bands, vegetation indices, and environmental features as input.
It forms the foundation of our network, setting the stage for
complex pattern recognition and analysis.

Dense Layers: Following the input layer, the network archi-
tecture includes a sequence of densely connected layers with
ReLU (Rectified Linear Unit) activation functions. These lay-
ers, arranged hierarchically with 128, 64, and then 32 neurons,
are designed to process increasingly complex representations
of the input data. The output of each layer, Dj , is computed
as:

Dj = ReLU(WjDj−1 + bj), j = 1, 2, 3 (2)

where Dj is the output, Wj the weights, and bj the bias
of the jth layer, allowing the model to effectively uncover
intricate patterns essential for SOC estimation. This hierarchi-
cal design enhances the network’s ability to discern complex
spatial dependencies and attributes within the data.

Attention Layer: This layer utilizes an attention mechanism
to selectively emphasize the most relevant features for SOC
estimation. By calculating attention scores using a dot-product
operation between the input features from the last dense layer,
Dn=3 (where n is the number of layers), and a trainable
query vector, q, the network dynamically focuses on critical
information:

α = softmax(qTDn=3) (3)
The computed scores, α, effectively determine the impor-

tance of each feature, enabling the model to prioritize and
process bands or indices crucial for SOC estimation with
enhanced accuracy. This mechanism significantly improves the
model’s ability to make data-driven decisions based on feature
relevance.

Context Vector and Output: The attention mechanism’s
outcome is synthesized into a context vector C, a weighted
sum of pivotal features A and the last dense layer’s output
D3, effectively capturing the most relevant information for
SOC estimation:

C = A+Dn=3 (4)
Leveraging this comprehensive context, a final dense layer

with a linear activation function computes the SOC estimation,
ŷ, as follows:

ŷ = WoC + bo (5)

In this equation, Wo and bo represent the weight and bias
parameters of the output layer, respectively. These parameters

are fine-tuned during the training process to accurately map
the context vector C to the estimated SOC values. This final
step ensures the model’s estimation are directly influenced
by the most salient features identified through the attention
mechanism, enhancing the accuracy and interpretability of
SOC estimations.

Optimization and Loss Function: To facilitate efficient learn-
ing, the model employs the Adam optimizer, renowned for
its effectiveness in handling sparse gradients and adaptive
learning rate adjustments. Coupled with this optimization
strategy is the use of Mean Squared Error (MSE) as the
loss function, which quantifies the difference between the
actual SOC values and the model’s estimation. The MSE is
mathematically represented as:

MSE =
1

m

m∑
i=1

(yi − ŷi)
2 (6)

where m is the number of samples, yi denotes the actual
SOC value for the ith sample, and ŷi is the corresponding
estimated SOC value by the model. This loss function ensures
that the training process is geared towards minimizing the
estimation errors, refining the model’s accuracy over time.

The incorporation of these optimization and loss calculation
techniques into our model’s architecture specifically addresses
the challenges posed by SOC estimation from L8 satellite
data. By introducing key innovations such as dynamic feature
weighting through an attention mechanism, capturing complex
spatial dependencies, and fine-tuning the model with the Adam
optimizer and MSE loss function, our approach significantly
enhances prediction accuracy and model interpretability. These
advancements mark a notable progression beyond the ca-
pabilities of traditional deep learning and machine learning
models, highlighting our model’s sophistication and potential
in providing accurate SOC estimations.

V. METHODOLOGY

This section presents a streamlined methodology for SOC
estimation using the LUCAS 2018 dataset and L8 satellite
imagery (Fig. 4). Initially, L8 images corresponding to bare
and barley soil samples were processed through radiometric
calibration, atmospheric correction, and pansharpening to a
15m resolution. Reflectance values were analyzed to observe
the relationship between bare soil and barley vegetation,
leading to the development of three correction matrices based
on vegetation health. These matrices were applied to adjust
for vegetation impact.



Fig. 4. Illustration of the regression framework employed in the proposed
investigations.

Input features included seven L8 bands, six vegetation
indices (RVI, NDVI, GNDVI, EVI, SAVI, MSAVI), three soil
indices (BI, SI, CI), and TCT-transformed bands, totaling 22
features for model development. An attention-based deep neu-
ral network was proposed, and its SOC estimation performance
was compared against three ML models (RF, SVR, CBR)
and a 1dCNN. Model implementation and hyperparameter
optimization were conducted using scikit-learn and a five-fold
grid-search method. The dataset was split into training (80%)
and testing (20%) sets, with model performance evaluated
using R2, RMSE, and RPD metrics, detailed mathematically
in R. Reda et al. [15].

VI. RESULTS AND DISCUSSION

This section presents the SOC estimation results derived
from L8 satellite data and corresponding ground truth from
the LUCAS 2018 dataset. Our investigation commenced with
a comprehensive Pearson’s correlation matrix analysis to
decipher the intricate relationships between each L8 band
and SOC. Fig. 5 visually presents the correlation findings,
revealing a negative correlation trend with SOC across raw
bands. Notably, bare soil exhibited significantly higher cor-
relation values than barley plants’ various stages. However,
Pearson’s correlation has significantly increased when the
different stages of barley have transformed with the proposed
correction coefficients matrix (Fig. 5), suggesting the potential
of learning-based models for SOC estimation even in barley-
vegetated fields.

In the second stage of analysis, we compared the estima-
tion performance of our novel attention-based deep learning
(AM) model with that of established counterparts (Table II),
including 1dCNN and conventional ML models (RF, SVR, and
CBR). To make the learning-based models robust, we consid-
ered a five-fold cross-validation technique to eliminate under-
fitting and over-fitting data and understand the estimation
performance of unseen data. The paper [7] introduced novel

Fig. 5. Pearson’s correlation analysis comparing raw and corrected Landsat
8 satellite data reflections across the seven bands (B).

indices and used those indices and other features to estimate
SOC for bare soil. As it is a relevant and recent method,
we have also compared the performance of the proposed
method against this technique. However, our proposed AM
model significantly outperforms the method in [7], where
R2 = 0.54, RMSE = 4.42, RPD = 1.43.

The estimation performance of learning-based models sig-
nificantly decreases even with minimal vegetation on the top
of the soil, as the reflectance of the L8 satellite is highly
impacted due to vegetation and exhibits R2 = 0, indicating
that learning-based models do not provide any explanatory
power for the observed variability in the dependent variable.
Therefore, estimating SOC from the remote sensing data with
the vegetation becomes challenging. Despite a performance
decline across models, our proposed correction matrix was
pivotal in maintaining a comparable estimation performance
for all considered models. The AM model provides the best
estimation results for the different stages of barley plants (cor-
rected bands). The estimation performance of AM decreases
slightly when all types of corrected barley soil samples are
considered together (R2 = 0.51, RMSE = 5.07, RPD =
1.41). Finally, when corrected bare soil and all barley soil
samples are considered, AM provides the best SOC estimation
with R2 = 0.46, RMSE = 5.45, RPD = 1.35 compared to
other models.

Implementing our novel correction coefficient matrix sig-
nificantly improved SOC estimation accuracy by mitigating
vegetation impact, highlighting our attention-based neural net-
work’s unique ability to assign weights to crucial features
dynamically. This dynamic feature weighting is a distinctive
aspect of our model that contributed to its superior perfor-



TABLE II
REGRESSION RESULTS (R2 , RMSE , RPD) OF DL AND ML MODELS IN ESTIMATING SOIL ORGANIC CARBON

Soil property AM 1dCNN RF SVR CBR
Bare soil 0.54, 4.42, 1.43 0.52, 4.43, 1.42 0.49, 4.54, 1.40 0.45, 4.60, 1.38 0.52, 4.45, 1.42

Bare soil (R2, RMSE) [7] — — 0.37, 5.29 [7] 0.45, 5.79 [7] 0.52, 5.25 [7]
Unhealthy Barley 0, 5.83, 0.97 0, 7.35, 0.77 0, 6.56, 0.86 0, 5.87, 0.96 0, 6.23, 0.91
M. Healthy Barley 0, 6.02, 0.90 0, 7.30, 0.74 0, 6.29, 0.86 0, 6.36, 0.85 0, 6.17, 0.88

Healthy Barley 0, 7.22, 0.94 0, 8.03, 0.85 0, 8.74, 0.78 0, 7.54, 0.90 0, 9.79, 0.70
All Barley 0, 7.25, 0.98 0, 7.90, 0.90 0, 7.25, 0.98 0, 7.22, 0.98 0, 7.39, 0.96

Bare soil and Barley 0.19, 6.35, 1.05 0.13, 6.61, 1.01 0.17, 6.44, 1.03 0.14, 6.53, 1.02 0.11, 6.31, 1.05
C. Unhealthy Barley 0.34, 4.47, 1.23 0.30, 4.51, 1.18 0.28, 4.81, 1.18 0.33, 4.64, 1.22 0.29, 4.79, 1.17
C. M. Healthy Barley 0.44, 4.32, 1.37 0.40, 4.46, 1.29 0.35, 4.64, 1.24 0.43, 4.35, 1.32 0.38, 4.52, 1.27

C. Healthy Barley 0.53, 4.63, 1.47 0.48, 4.95, 1.38 0.43, 5.14, 1.33 0.50, 4.67, 1.42 0.48, 4.93, 1.38
C. All Barley 0.51, 5.07, 1.41 0.43, 5.49, 1.32 0.41, 5.42, 1.31 0.45, 5.39, 1.35 0.33, 5.96, 1.22

C. Bare soil and Barley 0.46, 5.45, 1.35 0.41, 5.59, 1.30 0.38, 5.67, 1.28 0.36, 5.71, 1.25 0.31, 5.77, 1.22
M. = Moderate, C. = Corrected.

mance over conventional DL and ML models. Acknowledging
the necessity of a critical examination, we employed a rigorous
five-fold cross-validation to affirm our model’s robustness,
ensuring its reliability amidst vegetation cover challenges.
Despite its success, our study’s dependence on the LUCAS
2018 dataset and specific preprocessing methods might affect
its broader applicability. By thoroughly documenting our ap-
proach, we aim to enable reproducibility and inspire future
research to broaden our findings across diverse environmental
conditions and datasets, pushing forward the precision and
utility of SOC estimation in vegetated landscapes.

VII. CONCLUSION

This study explores the possibility of estimating SOC from
the barley-vegetated cover fields from the L8 satellite data with
a ground truth LUCAS 2018 dataset. The proposed correc-
tion coefficient matrix successfully minimizes the vegetation
effects on the top of the soil, and satisfactory estimation
performance is observed. A comparable study of popular
DL and ML models has been investigated to understand the
SOC estimation performance. An attention-based deep neural
network has also been proposed and is crucial in assigning
dynamic weighting to the most significant feature bands.
Our proposed model offers a promising framework for SOC
estimation, addressing the challenges posed by the variability
in L8 reflectance data. This work can be further extended
to understand different vegetation’s reflectance behavior and
estimate other soil contents.
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