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Abstract—Existing approaches to Multimodal Aspect-Based
Sentiment Analysis have drawbacks: (i) Aspect extraction and
sentiment classification always exhibit loose connections, over-
looking aspect correlations which leads to inaccurate analysis
of indirectly described aspects. (ii) Image pixels are coarsely
treated equally in most methods, introducing visual noise that
compromise sentiment analysis accuracy. (iii) Additionally, most
rely on extra pre-training image-text relation detection networks,
limiting their generality. To address these issues, we propose
the Joint modal Circular Complementary attention framework
(JCC) which optimizes aspect extraction and sentiment classifi-
cation jointly by incorporating global text to enhance the model’s
awareness of aspect correlations. JCC utilizes text for visual high-
lighting to mitigate the impact of visual noise. Furthermore, we
design the Circular Attention module (CIRA) for general feature-
focused aspect extraction and the Modal Complementary Atten-
tion module (MCA) for detailed information-focused sentiment
classification. Experimental results across three MABSA subtasks
demonstrate the superiority of JCC over existing methods.

Index Terms—Multimodal, Sentiment Analysis, Aspect Corre-
lation, Visual Noise, Attention

I. INTRODUCTION

Multimodal Aspect-Based Sentiment Analysis (MABSA)
is a highly fine-grained task in sentiment analysis that has
garnered significant attention recently [1]–[4]. Previous studies
primarily focused on individual subtasks, including Multi-
modal Aspect Term Extraction (MATE) [5]–[8] and Mul-
timodal Aspect Sentiment Classification (MASC) [9]–[14].
MATE predicts aspects presented in the text based on text-
image pairs, while MASC predicts the sentiment polarity
corresponding to known aspects. However, the accuracy of
aspect term extraction in MATE directly impacts the results
of aspect sentiment classification in MASC, thus integrating
the two subtasks is imperative. To address this, Ju et al. [1]
introduced the Joint Multimodal Aspect Sentiment Analysis
(JMASA) task, aiming to predict aspects and their correspond-
ing sentiment polarity simultaneously.

In Fig. 1, JMASA aims to identify aspect-sentiment pairs
like (Taylor Swift, Positive) from text-image pairs. In instances
where direct descriptions are unavailable for certain aspects
(e.g., Taylor Swift), it becomes necessary to integrate senti-
ment semantics from related aspects (e.g., voice, lyrics) for

*Lijun He is the corresponding author.

Fig. 1. The left side presents an example of JMASA task. The right side
illustrates the corresponding scenarios with missing visual aspects and indirect
descriptions. ‘None’ indicates non-existence.

discrimination. Moreover, while images offer more detailed
features compared to text, some aspects may be absent. As
depicted in Fig. 1, visual information effectively aids sentiment
analysis for “Taylor Swift” but falls short in extracting details
about “voice” and “lyrics”. These challenges contribute to the
difficulty of MABSA.

As mentioned above, we emphasized the importance of
integrating sentiment semantics from pertinent aspects for sen-
timent analysis on indirectly described aspects. However, for
textual information in MASC, Ju et al. [1] solely considered
aspectual representations, limiting the model’s awareness of
aspect interrelations and making it challenging to analyze
aspects without direct descriptions. During multimodal fu-
sion, Ju et al., Ling et al. [2] and Yang et al. [3] directly
correlated entire visual representations with textual content.
Yet, coarse entire image visualization intuitively introduces
aspect-independent visual noise, potentially hindering senti-
ment analysis. Futhermore, the incongruity in quantity of
semantic information and detail levels between images and text
poses a challenge as previously noted. In the MABSA subtask,
the asymmetry in the amount of image and text information
makes modal fusion susceptible to modal overlay. Addition-
ally, MASC demands more detailed information compared to
MATE. Addressing this challenge, Ju et al. and Zhou et al.
[4] introduced a module for image-text relation detection to
determine the appropriate level of image information for a



given task and fused the features directly. However, establish-
ing such image-text relations in the real world is both difficult
and resource-intensive and direct modal fusion may lead to
information loss.

In this paper, we propose the Joint modal Circular
Complementary attention framework (JCC) to handle the
aforementioned challenges. The main contributions are sum-
marized as follows:

1) A joint multimodal aspect-based sentiment analysis
framework introducing global text in MASC: The frame-
work concatenates MATE and MASC tasks to align
with real-world needs. Unlike other approaches that
overlook the correlations between aspects, JCC tackles
the challenge of indirect aspect sentiment analysis by
incorporating global text (GText) in the MASC task,
enabling the model to learn aspect correlations.

2) Reducing the impact of visual noise by utilizing text-
highlighted visual features: JCC utilizes textual repre-
sentations to highlight visual features, reducing visual
noise from coarse entire images. This allows the model
to concentrate on aspect-dependent image features.

3) CIRA and MCA modules for modal fusion focusing on
different levels of detail features: Due to the difficulty in
obtaining image-text relations in reality, JCC introduces
a CIRA module for the MATE task and a MCA module
for the MASC task to focus on different levels of
detail features. These modules circumvent the strong
constraint of image-text relation detection and enhance
the generalizability of method.

II. METHODOLOGY

A. Task Definition

Formally, we define three subtasks within MABSA:
JMASA, MATE, and MASC. For a dataset comprising multi-
modal samples D = {(Ii, Si)}Ni=1, each sample containing an
image I and a sentence S consisting of n words {W0, ...,Wn},
we annotated each word Wj using the BIO sequence tagging
method with entity labels. These labels indicate whether the
word is an aspect term and specify its sentiment polarity
p ∈ {positive,neutral, negative}. For these three subtasks, we
formulate their outputs as follows:
• JMASA: Output = [(ab1, a

e
1, p1), ..., (abi , a

e
i , pi), ...],

• MATE: Output = [(ab1, a
e
1), ..., (abi , a

e
i ), ...],

• MASC: Output = [(ab1, a
e
1, p1), ..., (abi , a

e
i , pi), ...],

where abi , aei and pi inform the start index, end index, and
sentiment polarity of an aspect term in the sentence. In
other words, we want the model to be able to predict
the corresponding aspects, sentiment polarity or both
simultaneously based on text and its associated image. The
underlined token denotes that it was given during inference.

B. Feature Extractor

Text Representation. We tokenize the input text and
convert it into textual representation using BERT1. Let

1https://huggingface.co/bert-base-uncased

Tok = {tok1, ..., tokN} represent the input tokens, and
T = {t1, ..., tN} denote the resulting textual representation.

Visual Representation. We employ the pre-trained
ResNet1522 to extract image features. The resulting output
feature tensor is represented as V ∈ R2048×49, where 49
corresponds to image region and 2048 is the feature dimension.
To ensure consistency in dimension between image and text
representations, we project the image features to match the
text dimension, denoted as V ∈ Rd×49.

C. Circular Attention for MATE

The top-left part of Fig. 2 illustrates the MATE architecture.
Initially, the cross-modal attention network (CA) employs
text as a guide to generate highlighted visual features (HLV)
denoted as H ∈ Rd×49, thereby mitigating the influence of
irrelevant visual noise on the model. The CA is shown on the
left side of the Fig. 2.

We devise the CIRA for closed-loop inter-attentional fusion
among three unimodal features: T , V , and H . The CIRA
module is multi-stage and treats each modality feature equally
to align the requirements of the MATE task. The fusion order
is altered across stages to facilitate the integration of informa-
tion from diverse perspectives. The fusion algorithm has the
flexibility to modify the type and number of fused modalities,
showcasing excellent scalability adaptable to various tasks.

As depicted in Fig. 2, the CIRA module is divided into
two stages: the multimodal inter-attention fusion stage and
the reverse order mutual attention stage. The entire module
is cascaded with CAs, and each stage consists of three CAs:
CAH(), CAV (), and CAT (), corresponding to the CAs
guided by H , V , and T . The CA achieves the fusion of two
modal information, for example, the vision-text cross-modal
attention fusion network CAT () takes textual features and
the output features from the previous network as input and
produces dominant textual fusion features. Taking the first
CAH() as an example, its H as query and T as key and
value, the output is

CAH(H,T, T ) = softmax(
[WQH][WKT ]>√

d
)[WV T ], (1)

where WQ, WK and WV ∈ Rd×dhead . In the first stage, the
fusion order is arranged as CAH(), CAV (), CAT (), while in
the subsequent stage, it is reversed. The fusion order differs
at each stage and the fusion between any two modalities is
constrained by another modality. Subsequently, by concate-
nating the input feature T with Fc which is the output of
CIRA, the outcome is processed through the feedforward layer,
producing F ′ as the input for the aspect extraction algorithm.
F ′ = FFN(Fc ⊕ T ), where ⊕ denotes concatenation in
dimensions. Subsequently, F ′ is mapped through a linear
layer to form an unstandardized vector f representing the
aspect’s start-end positions, which is then used to generate
the corresponding probability distribution p:

fs = Linears(F ′), fe = Lineare(F ′), (2)

2https://download.pytorch.org/models/resnet152-b121ed2d.pth



Fig. 2. The pipeline of our proposed JCC.

ps = softmax(fs), pe = softmax(fe). (3)

During training, considering the possibility of multiple
aspects within each input sentence, start position label vector
ys and end position label vector ye are defined based on aspect
term sequences A = {a1, a2, · · · , ak} from the dataset. The
n-th dimension ysn of the start position label vector indicates
whether the n-th position represents the beginning of an aspect
term, while yen of the n-th dimension of the end position
label vector ye indicates whether it denotes the end of an
aspect term. The optimization objective is formulated as the
sum of the predicted probability distribution vectors and the
corresponding loss values of the label vectors:

Lmate = −
l+2∑
n=1

ysn log(psn)−
l+2∑
n=1

yen log(pen), (4)

where l is the length of the text term sequence, psn and pen
denote the n-th dimension of ps and pe, respectively.

We analyze the aspect terms based on the obtained ps,
pe, fs and fe. Intuitively, the positions of aspect terms are
determined by selecting the top K largest values from the
vector of unstandardized scores of aspect term start and end
positions: fsk + fel (k ≤ l), where k is the start position and l
is the end position. However, simply taking the first K aspect
term positions based on the sum of the two scores may lead
to multiple predicted aspect terms referring to the same text.

Therefore, we adopt the inference algorithm outlined in
Algorithm 1. Initially, the Top-M score value is selected from

fs and fe of each sample, and the eligible start positions
become candidate start positions of the aspect terms. The
corresponding candidate aspect term scores ul and candidate
aspect term positions rl are consolidated into their respective
sets. γ serves as the score threshold.

Subsequently, rl corresponding to the highest score value
is iteratively removed from the set and incorporated into the
aspect term position set O. Simultaneously, the corresponding
data is eliminated from the set of to-be-selected aspect term
positions R and the set of scores U until the size of the aspect
term location set exceeds a predefined value of K or the set of
to-be-selected aspect term locations R is empty. The definition
of ul = fssi + feej − (ej − si + 1) signifies the objective
of selecting aspect term start and end positions with higher
unstandardized scores and shorter aspect term lengths. Each
time a new position is merged in, the remaining to-be-selected
set and the score set are checked for any overlap, and if any
exists, it is removed to minimize redundancy in the predicted
aspect terms.

D. Modal Complementary Attention for MASC

On the right side of Fig. 2, we truncate the text features
to obtain aspect textual features Ta ∈ Rd∗n utilizing the
aspect positions obtained from the prediction of MATE,where
n denotes the number of aspects. Subsequently, Ta, T , and H
are inputted into MASC subtask.

We introduced the MCA to address the need for a closer
focus on more detailed visual features in MASC compared



Algorithm 1 Aspect term extraction algorithms
1: Input: fs, fe, γ, K
2: Output: O
3: procedure
4: Initialize the set of to-be-selected aspect term locations
R = {}, scores U = {}, and aspect term locations O = {}.

5: The position indexes corresponding to the Top-M val-
ues from fs and fe are denoted as S and E, respectively.

6: for si in S do
7: for ej in E do
8: if si ≤ ej and fssi + feej ≥ γ then
9: ul = fssi + feej − (ej − si + 1)

10: rl = (si, ej)
11: R = R

⋃
{rl};U = U

⋃
{ul}

12: end if
13: end for
14: end for
15: while R 6= {} and size(O) < K do
16: R = R

⋃
{rl};U = U

⋃
{ul}

17: O = O
⋃
{rl};R = R− {rl};U = U − {ul}

18: for wr in R do
19: if fl(rl, rw) 6= 0 then
20: R = R− {rw};U = U − {uw}
21: end if
22: end for
23: end while
24: end procedure

to MATE. However, the H remain sparse and coarse in
comparison to Ta and T . To improve information density,
we initially perform cross-modal fusion between Ta and H .
Next, Ta serve as queries, while T and the fused highlighted
visual representations Ha act as key and value for cross-modal
complementary fusion. The results are concatenated and then
fed to a feedforward layer to obtain the sentiment feature Fs.

From Fs, the emotional polarity score is initially obtained
using the linear network as defined in Eq.5. Subsequently, the
obtained score is normalized through the softmax function, as
outlined in Eq.6, to produce the polarity probability:

fp = Linear(tanh(Linear(Fs))), (5)

pp = softmax(fp). (6)

Thus, we can formulate the optimization objective for the
MASC subtask as Eq.7:

Lmasc = −
m∑
j=1

ε∑
n=1

ypjn log(ppjn), (7)

where m is the number of aspect terms, ε represents the count
of lexical elements in an aspect term. The sentiment label ypjn
corresponds to the n-th lexical element of the j-th aspect term,
while ppjn is the n-th dimension of the vector representing the
probability distribution of sentiment polarities for aspect terms.

During inference, we calculate the probability of sentiment
polarity within the target span for each aspect term in the set
O. The sentiment category with the highest value in pp is then
selected as the sentiment category for the current aspect term.

As our proposed method involves the joint training of the
MATE subtask and the MASC subtask, the overall optimiza-
tion objective for the method is:

L = Lmate + Lmasc. (8)

III. EXPERIMENTS

A. Experimental Settings

Downstream datasets. To assess our model’s performance,
we utilize two multimodal datasets, namely Twitter-15 and
Twitter-17. These datasets consist of sentences containing
multiple aspects along with associated pictures.

Implementation Details. We implement our method using
PyTorch on an NVIDIA GTX 3090, setting the hidden dimen-
sion d of BERT to 768, and using 8 heads for the CA module.
Training is performed on the training dataset, validation on
the dev dataset, and the model with the highest F1 value is
selected for testing on the test dataset. All models underwent
50 training epochs with a fixed batch size of 128, employing
the Adam optimizer with learning-rate set to 2e-5.

Evaluation Metrics. We validate our model across the three
MABSA subtasks. For JMASA and MATE, we employ Micro-
F1 score (Mic-F1), Precision (P), and Recall (R) as evaluation
metrics. In the case of MASC, we adhere to Accuracy (ACC)
and Macro-F1 (Mac-F1) to ensure a fair comparison with prior
methods.

B. Main Results

Results of JMASA. Table I summarizes the performance of
various methods for JMASA. Among them, JCC demonstrates
the highest overall performance, except for the R-value metric
on the Twitter-15 dataset. Clearly, JCC enhances the network’s
ability to perceive aspect relations and reduces visual noise by
incorporating global text and highlighting image representa-
tions. Consequently, it reduces the number of false positives.
Moreover, the integration of CIRA and MCA efficiently fuses
multimodal features. At the same time, we observed that
OSCGA-collapse has a slightly higher R-value than JCC on
Twitter-15. This may be attributed to its use of Mask RCNN
for object-level visual representation extraction which comes
at the cost of increased complexity.

Results of MATE. The performance of each method on the
MATE task is presented in Table II. JCC-MATE achieves the
highest P and Mic-F1 values on both datasets. Additionally,
JCC without CIRA achieves the highest R-value on Twitter-15
and Twitter-17. This highlights the architectural advantages of
our joint method, where the highlighted visual representation
exhibits a higher signal-to-noise ratio. The CIRA module
effectively integrates multimodal information, significantly re-
ducing the number of false positive samples.

Results of MASC. Table III showcases the performance
of different methods for MASC. JCC-MASC stands out with



TABLE I
RESULTS OF DIFFERENT APPROACHES FOR JMASA. * DENOTES THE RESULTS ARE FROM [1].

Twitter-15 Twitter-17Modality Approaches P R Mic-F1 P R Mic-F1

SPAN* [15] 53.9 53.9 53.8 59.6 61.7 60.6Text-based D-GCN* [16] 58.3 58.8 59.7 64.2 64.1 64.1

UMT+TomBERT* [6] [11] 58.4 61.3 59.8 62.3 62.4 62.4
OSCGA+TomBERT* [7] [11] 61.7 63.4 62.5 63.4 64.0 63.7
UMT-collapse* [6] 60.4 61.6 61.0 60.0 61.7 60.8
OSCGA-collapse* [7] 63.1 63.7 63.2 63.5 63.5 63.5
RpBERT* [17] 49.3 46.9 48.0 57.0 55.4 56.2
JML [1] 62.1 62.1 62.1 66.5 65.5 66.0

JCC 63.3 63.4 63.3 67.3 65.2 66.2
JCC w/o GText 59.8 60.5 60.1 65.7 62.8 64.2
JCC w/o HLV 63.2 63.1 63.1 66.3 65.0 65.7
JCC w/o CIRA 57.1 63.3 60.0 64.3 66.9 65.6

Multi-modal
Joint Task

JCC w/o MCA 62.3 58.0 60.0 63.7 61.4 62.5

TABLE II
RESULTS OF DIFFERENT APPROACHES FOR MATE. * DENOTES THE

RESULTS ARE FROM [1].

Twitter-15 Twitter-17
Approaches P R Mic-F1 P R Mic-F1

RAN* [5] 80.5 81.5 81.0 90.7 90.0 90.3
UMT* [11] 77.8 81.7 79.7 86.7 86.8 86.7
OSCGA* [7] 81.7 82.1 81.9 90.2 90.7 90.4
JML-MATE [1] 81.0 81.1 81.1 90.8 89.9 90.3

JCC-MATE 84.0 81.7 82.7 91.8 89.5 90.7
JCC-MATE w/o HLV 83.0 81.7 82.5 90.3 90.1 90.2
JCC-MATE w/o CIRA 80.3 83.8 82.0 90.3 90.8 90.6

TABLE III
RESULTS OF DIFFERENT APPROACHES FOR MASC. * DENOTES THE

RESULTS ARE FROM [1].

Twitter-15 Twitter-17
Approaches ACC Mac-F1 ACC Mac-F1

TomBERT* [11] 74.0 71.8 70.5 68.0
CapTrBERT [10] 78.0 73.2 72.3 70.2
ESAFN* [12] 70.9 - 65.5 -
JML-MASC [1] 76.1 72.3 72.3 69.9

JCC-MASC 78.5 73.9 73.6 72.2
JCC-MASC w/o GText 76.3 71.8 72.0 70.8
JCC-MASC w/o HLV 77.5 72.1 72.4 71.3
JCC-MASC w/o MCA 76.5 72.6 71.4 70.2

the highest performance on both datasets. The introduction of
global text allows the model to comprehend the correlations
between aspects. Through the MCA module, it focuses on
detailed multimodal features, thereby enhancing the accuracy
of sentiment classification.

C. Ablation Study

To validate the effectiveness of each module in JCC, we
designed a series of ablation experiments.

Contribution of GText. In order to confirm the role of
GText in MASC, we removed GText in the JMASA and
MASC tasks, as shown in Table I and Table III respectively.
The results decreased significantly, which shows that not only
Ta but also T are necessary for polarity classification.

Contribution of HLV. In highlight the role of HLV, we
substitute HLV with V . As demonstrated in Tables I, II,
and III, the results decrease, signifying that HLV emphasizes
certain image details. This enables the model to concentrate
more on key features, thereby enhancing performance.

Contribution of CIRA. To investigate the validity of CIRA,
we conducted an experiment by removing it and inputting
T , H , and V into the FFN after concatenating them. The
results, as shown in Tables I and II, reveal that while the
R-value become higher after removing CIRA, the P-value
decrease significantly. This is because the model no longer
focuses on integrating information but shifts its attention
to all information, thereby increasing the predicted quantity,
resulting in an increase in the R-value and a decrease in the
P-value.

Contribution of MCA. As shown in Tables I and III,
the removal of the MCA module resulted in a significant



decrease in all indicators for both JMASA and MASC tasks.
This suggests that the MCA module plays a crucial role
in integrating information from each modality and refining
emotional features.

D. Case Study

Fig. 3. Visualization of predictions for JML, JCC w/o MCA, and JCC.

To demonstrate the effectiveness of our joint multimodal
approach, Fig. 3 illustrates a case where JCC correctly predicts
and compares it with JCC w/o MCA and JML. In this case,
all models accurately extract two terms, while JML incorrectly
analyzes the sentiment polarity for the term “ussoccer ynt”.
However, after removing the MCA module from JCC, the
polarity of both terms is incorrectly analyzed. This case study
underscores that JCC correctly extracts aspects and predicts
polarity by joint frameworks and effectively fusing visual and
textual information.

IV. CONCLUSION

In this paper, we propose the JCC framework for MABSA
task. To tackle the challenge of indirect aspect sentiment anal-
ysis, we introduce global text in the MASC task. Additionally,
to mitigate the impact of visual noise, we utilize text to
cross-modally highlight images, guiding the model to focus
on aspect-related information. Moreover, to accommodate
varying levels of detail in input features for the MATE and
MASC tasks, we employ two customized modules for modal
semantic fusion with different levels of detail. Experimental
results across the three MABSA subtasks demonstrate the
effectiveness of our approach.
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