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ABSTRACT

This study explores the integration of large language mod-
els (LLMs) with situational awareness-based planning (SAP)
to enhance the decision-making capabilities of AI agents
in dynamic and uncertain environments. By employing a
multi-agent reasoning framework, we develop a methodology
that not only anticipates but actively mitigates potential risks
through iterative feedback and evaluation processes. Our ap-
proach diverges from traditional automata theory by incor-
porating the complexity of human-centric interactions into
the planning process, thereby expanding the planning scope
of LLMs beyond structured and predictable scenarios. The
results demonstrate significant improvements in the models’
ability to provide comparative safe actions within hazard in-
teractions, offering a perspective on proactive and reactive
planning strategies. This research highlights the potential of
LLMs to perform human-like action planning, thereby paving
the way for more sophisticated, reliable, and safe AI systems
in unpredictable real-world applications.

1. INTRODUCTION

Developing AI agents capable of flexible decisions is chal-
lenging due to real-world unpredictability [1]. Humans man-
age these uncertainties with situational awareness, whose lack
is a major cause of accidents from human errors [2, 3]. Ya-
dav [4] emphasizes that understanding situational awareness
in LLMs is crucial for their safe development. Without this
understanding, seemingly beneficial actions can have unin-
tended consequences [5, 6]. For instance, an autonomous
agent needs nuanced judgments to prevent harm, such as
when a toddler reaches for a hot pot or plays with a knife.

The application of LLMs for SAP introduces a signifi-
cant paradigm shift due to the inherently infinite state space
of the open world, which is in stark contrast to the relatively
confined state spaces observed in traditional game strategies
[7, 8]. The advantage lies in LLMs’ ability to describe de-
tails and dynamically interact within contexts using natural
language, allowing for an extensive expansion of state de-
scriptions. This feature proves particularly apt for enabling
intelligent agents to achieve a comprehensive understanding
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Fig. 1. Large language models’ planning enhancements
based on situational awareness.

of the real environment’s interactive state, thereby enhanc-
ing their capability to detect potential hazards, predict forth-
coming conditions, and formulate multi-step strategic actions.
Prior investigations on the applications of LLMs within the
scope of computational models like finite state machines and
behaviour trees, specifically targeting certain tasks or sub-
tasks completion [9, 10, 11]. These applications typically ex-
ploit the reasoning capabilities of LLMs for the design of state
space transitions and programming [9]. However, these stud-
ies have seldom extended into open-world settings, where the
unpredictability and intricacy of real-world interactions pose
significant challenges. Contemporary research in embodied
intelligence often establishes ”Rules” that prohibit interac-
tions with humans or animals, the handling of sharp objects,
and involvement in dangerous settings such as those with wa-
ter and electricity, aiming to define research boundaries and
simplify complex issues, akin to the approach seen in the
Google RT-X Series [12, 13, 14]. Nonetheless, the simula-
tions for robots and agents [15, 16, 17, 18] ignore real-world
hazardous interactions that are prevalent and essential to con-
sider in daily scenarios.

This research demonstrates that LLMs can display
human-like planning capacities rooted in situational aware-
ness, as illustrated in Fig. 1. When prompted for plan-
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Actions selected from this list:
Reaching,Gripping,Lifting,Lowering,Transporting,Rota
ting,Turning,Flipping,Folding,Hanging,Unfolding,Wipi
ng,Sweeping,Mopping,Scrubbing,Dusting,Spraying,Sq
ueezing,Shaking,Stirring,Whisking,Pouring,Scooping,
Checking,Opening,Closing,Pushing,Pulling,Dragging...

Example for you:
 '''class ButlerRobotHFSM:
    def __init__(self):
        # Setup the states in the finite state machine
        self.states = {
            'INITIAL': self.initial,
            'ASSESS_SITUATION': self.assess_situation,
            'COVER_POOL': self.cover_pool,
            'ENGAGE_CHILDREN': self.engage_children,
            'MONITOR_PLAY': self.monitor_play,
            'CALL_FOR_HELP': self.call_for_help
        ｝ ...'''

 Here is the analysis with 
scores and justifications for 
the FSM in this code:
1. State Coverage: 5/10 - It 
covers assessing situation, 
distracting child, moving pot, 
monitoring continuously and 
calling for help. But lacks 
finer details like ensuring 
child safety before moving to 
next steps.  ....

Overall Benchmark Score: 
(5 + 8 + 6 + 7 + 6 + 5 + 8) / 7 
= 6.3
The strengths of this FSM are 
appropriately assessing the 
situation, taking steps to 
move the pot and distract the 
child. Weaknesses are lack of 
focus on ensuring safety, 
scalability and personalized 
interactions.

class ImprovedButlerRobotHFSM:
    def __init__(self):
        # Setting up the states
        self.states = {
            'INITIAL': self.initial_state,
            'ASSESS_SITUATION': self.assess_situation,
            'ENSURE_CHILD_SAFETY': self.ensure_child_safety,
            'DISTRACT_CHILD': self.distract_child,
            'MOVE_POT_AWAY': self.move_pot_away,
            'CHECK_ENVIRONMENT': self.check_environment,
            'MONITOR_SITUATION': self.monitor_situation,
            'CALL_FOR_HELP': self.call_for_help
        }
        self.current_state = 'INITIAL'
...

   def assess_situation_state(self):
    if self.is_child_near_stove() and self.is_pot_on_stove():
 # Check if the child is near the stove and if a pot is on 
        self.current_state = 'ENSURE_CHILD_SAFETY'
    else:
        self.current_state = 'CHECK_ENVIRONMENT'
    
   def ensure_child_safety_state(self):
        # First priority is to ensure the child's safety
        self.reminding('safety warning', 'child')
    if self.is_child_safe():
        self.current_state = 'DISTRACT_CHILD'
    else:
        self.current_state = 'CALL_FOR_HELP'  ...
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Fig. 2. Iteratively generating and evaluating plans in a multi-agent proactive AI system produces iterative feedback to enhance
reasoning and factual accuracy. † refers to selecting the human demo for comparison only in the first round of iteration.

ning that involves perception, comprehension, and projec-
tion [2], or when provided with reasoning feedback, the
LLM shows enhanced deductive reasoning skills that require
perspective-taking and consideration of potential outcomes.
This study stands apart from previous research in AI rea-
soning and planning in several significant ways. Most ex-
isting studies focus on task-specific planning or rely on as-
sumptions about predefined steps under controlled conditions
[19, 12, 13, 20, 18, 21]. Additionally, conventional agents
typically generate plans reactively, only in response to ex-
plicit instructions or demands [22, 15, 23, 24, 16, 25, 26, 27],
rather than proactively. In contrast, our approach focuses on
evaluating and enhancing models’ abilities for proactive sit-
uational planning in the face of real, open-world challenges.
Without strict constraints or direct environmental feedback,
the models must employ deductive reasoning to envisage ac-
tions while considering their consequences, relying solely on
a descriptive initial scenario and prompts.

2. METHODOLOGY

In this section, we outline the key challenges and methodolog-
ical components that enable collaborative multi-agent reason-
ing to enhance LLMs’ situational planning capacities.

2.1. Task Formulation and Key Challenges

We define SAP as grounded inference over a dynamic haz-
ard scenario s, with s ∈ S where S denotes the space of
hazard situations. The input consists of an unordered set of

concepts x = {c1, c2, ..., ck} ⊆ C, capturing entities, events,
and the temporal dynamics within s, with C representing the
overall conceptual vocabulary. The output is a step-wise plan
π : S → A, consisting of actions a1, a2, ... ∈ A, where A de-
notes the action space of possible interventions. Learning the
planning policy π : S → A requires overcoming two intrinsic
challenges:

1. Inadequate attainment of high levels of situational
awareness, marked by a deficiency in perceiving, un-
derstanding, and anticipating the dynamics of the haz-
ard environment when determining suitable state-action
mappings.

2. Difficulty in foreseeing the potential downstream im-
pacts of planned actions on human safety and property,
stemming from a limited grasp of the dynamics within
hazardous situations.

By formulating hazard remediation as a conceptual plan-
ning task requiring strong situational awareness, we evalu-
ate the multidimensional latent reasoning essential for reliable
situated agents operating in hazardous environments.

2.2. Multi-AI Agents Enhance Reasoning and Accuracy

Recent work has shown that employing multiple LLMs within
a cooperative framework, either collaborative or adversarial,
can enhance reasoning and factual accuracy. As highlighted
by Du et al., the interaction between agents, allowing them



to critique and refine each other’s reasoning, helps in correct-
ing logical flaws [28]. Similarly, Liang et al. have observed
that disagreement among agents fosters broader reasoning, as
each strives to surpass the others [29]. Such collaboration
leverages the individual strengths of each agent [28, 29, 30].
In this work, we employ two LLM agents - LLMgen for
plan generation and LLMeval for critical evaluation. We rely
on the synergistic interaction between these complementary
roles to enhance latent planning capabilities.

2.3. State-based Planning with Feedback

Current AI systems that operate on rigid, context-insensitive
rules are at risk of producing unintended outcomes when de-
ployed in complex, real-world environments [19, 12, 13, 20,
18, 21, 22, 15, 23, 24, 16, 25, 26, 27]. To enable more reliable
and ethical decision-making, it is crucial for architectures to
model interdependent variables and causal relationships in a
manner akin to human reasoning processes.

Algorithm 1 Situational Awareness-Based Planning
1: M̂ ← RLLMgen (S, T,A)

2: score, f ← RLLMeval
(M̂)

3: while M̂score < M∗
score do

4: M̂ ← RLLMgen (S, T,A, f)

5: score, f ← RLLMeval
(M̂)

6: end while
7: M∗ ← M̂
8: adoptM∗

One approach involves LLM agents collaboratively iter-
ating through the generation and evaluation of potential so-
lutions before their actual implementation. For example, we
conceptualize the design of a finite state machine (FSM) [31]
as a collaborative process between two models. A latent FSM
plan can be defined by a tuple M = (S, T,A), including a set
of states S, transitions T , and actions A. The process begins
by representing the plan’s reasoning process as R, with a gen-
erator agent reasoning (RLLMgen

) to plan then an evaluator
agent reasoning (RLLMeval

) to evaluate. RLLMgen
proposes

a candidate FSM plan M̂ , which RLLMeval
then scores and

provides feedback f on. RLLMgen incorporates this feedback
into the next proposal. This iterative loop continues until the
score of M̂ is higher than that of M∗(the benchmark plan),
which is finally adopted as the new optimal plan M∗. This
approach, detailed in Algorithm 1, facilitates tight refinement
loops that mirror human reasoning. By evaluating solutions
prior to their real-world deployment, it is possible to foresee
and mitigate unintended consequences.

Fig. 2 visually depicts the iterative process between
LLMgen and LLMeval. Consider a scenario where a young
child attempts to touch a hot pot on an active stove, cre-
ating a safety risk. The housekeeper robot observing this
scene starts planning appropriate interventions. First, the
instruction-prompted LLMgen uses its reasoning capabilities

to envision possible outcomes and formulate candidate FSM
plans to prevent harm. For instance, abruptly stopping the
child could cause fright, indicating that a gentler approach
or distraction with toys might be more effective. If the child
disregards these precautions and sustains a burn, emergency
actions may be required. The model LLMgen submits its pro-
posed plan M̂ , along with a comparative plan, which initially
includes a human demonstration and then the previous plan,
to LLMeval for evaluative scoring and feedback f . LLMgen

then integrates this feedback f into its future planning. Af-
ter one or more rounds of proposal and evaluation, the agents
refine their approach until the new optimal FSM plan’s score,
M∗, exceeds that of the benchmark plan, enabling it to handle
edge cases morally and robustly through situational inference.

By enabling the models to engage in proactive deductive
reasoning before deployment in the real world, potential un-
intended consequences can be anticipated and mitigated. As
the capabilities of LLMs advance, such methodologies show
promise for enhancing reliability and ethical standards in AI
systems designed for physical-world interactions.

2.4. Formation of Prompts

As depicted in Fig. 2, the prompts provided to the genera-
tive model (LLMgen) contain the scene description, a SAP
prompt, a list of actions, and an exemplar plan. The SAP
prompt is designed to elicit sophisticated reasoning by en-
couraging the model to thoroughly consider the varied needs
and potential interactions among people, animals, and ob-
jects. By explicitly prompting the model to infer the needs
of other entities and to anticipate how situations might evolve
dynamically, the prompt fosters empathy and holistic think-
ing, which are essential for devising comprehensive plans.
The one-shot exemplar illustrates the desired plan structure
in code format without providing solutions specific to the
evaluation scenario. In contrast, the prompt for the evalua-
tive model (LLMeval) contains a generated FSM plan from
LLMgen, a benchmark high-quality plan, and descriptions of
the scoring criteria to evaluate the quality of the plan through
iterative refinements (see Appendix Fig.17). Initially, bench-
mark plans consist of manually authored solutions, but in sub-
sequent iterations, they incorporate the highest-scoring auto-
generated plan from the previous round.

3. EXPERIMENTS

To systematically assess LLM planning capacities, standard-
ized benchmark scenarios are developed along with quantita-
tive scoring methodologies.

3.1. Evaluation Scenarios

The dataset comprises over 500 hazardous home scenarios,
specifically curated to fill gaps often ignored in academic



research, such as scenarios typically avoided by embodied
agents and agent simulations [14, 32, 12, 13, 15, 16, 17]. This
collection is aimed at scenarios that home assistance robots
are likely to encounter, including emergencies involving di-
verse human demographics, interactions with pets, and dan-
gerous situations involving sharp objects, water, electricity,
and open flames. In light of the constraints imposed by im-
age generation models such as DALL·E [33], the production
of images depicting hazardous scenarios is limited. Conse-
quently, the acquisition of pertinent imagery through internet
crawlers is employed to uphold precision in depicting these
perilous situations. From this comprehensive dataset, 24 vi-
gnettes are methodically selected across four complexity lev-
els for detailed analysis. Textual descriptions generated by
GPT-4V [34] and expert-validated solutions provide a robust
framework for evaluating the planning capabilities of LLMs.
This evaluation leverages the image-to-text capability of GPT-
4V to standardize inputs across models, focusing on planning
skills over visual data interpretation, thereby ensuring fair-
ness in assessment. Future studies will assess the effective-
ness of end-to-end vision language models (VLMs), aiming
to streamline the transition from perception to planning.

3.2. Actions Set

This study aims to quantify the complex planning abilities of
LLMs. To ensure fairness and consistency in subsequent eval-
uations, we have imposed certain limitations on the action set
available to AI agents. This action set includes 56 distinct
robot behaviours commonly employed in domestic settings,
as exemplified by representative actions displayed in the ac-
tion enumeration diagram located to the left of the central re-
gion in Fig. 2 (for more details, see Appendix A.1). This se-
lection provides a thoughtful baseline for functionality, draw-
ing on insights from some of the leading projects in intelligent
robotics [19, 12, 13, 35, 20, 36].

3.3. Evaluation Dimensions

As detailed in Appendix B Table 6, seven scoring dimen-
sions have been established to provide a comprehensive
methodology for assessing latent planning and FSM designs
[37, 38, 39]. These dimensions encompass coverage, com-
plexity, safety, reusability, user experience, and coherence, al-
lowing for the evaluation of structured completeness, valida-
tion requirements, real-world reliability, adaptability, human
factors, and solution integrity. Utilizing these dimensions col-
lectively fosters the creation of designs that are robust, de-
pendable, future-proof, ethical, and aligned with specifica-
tions. These dimensions also provide multi-faceted technical
and operational insights. Scoring FSMs across these seven
key dimensions on a scale from 0 to 10 enables an impartial
quantitative evaluation of the overall plan quality and high-
lights relative strengths and weaknesses to guide further re-

finements. The overall score is determined by calculating the
average of the scores across these seven dimensions.

3.4. Evaluation Metrics

Motivated by discussions of inconsistent human evaluation in
Iskender et al. [40] and the inadequate quality of automatic
metrics highlighted in Sottano et al. [41], we introduce a
rank-based scoring (RBS) method to help mitigate potential
reliability issues when evaluating FSM plans. This aims to
increase consistency compared to absolute scoring methods
prone to rater variability.

The RBS score provides an objective aggregation by com-
paring models pair-wise on each evaluation scenario and as-
signing differential rankings based on relative performance.
This eliminates variability from subjective absolute scoring.
The head-to-head comparisons also allow powerful models
like GPT-4 to participate in the evaluation. Rather than re-
quiring predefined output standards, GPT-4 can provide com-
parative judgments on model outputs. Given two model sets
M = M1,M2 evaluated on N scenarios with D scoring di-
mensions, models were compared pairwise for each scenario
i. Scores sijl were assigned from 0-10 across dimensions j
for each model l. Models were ranked rik ∈ 1, 2 per scenario
based on total score:

rik = argmin
l∈1,2

D∑
j=1

sijl

The higher scoring model was assigned rank 1 (1 point).
The lower scoring model was assigned rank 2 (2 points). If the
two models had equal total scores for a scenario, both were
assigned a mid-point rank of 1.5 (1.5 points). After evaluating
all scenarios, the ranking scores were aggregated to produce
an RBS score Rk per model:

Rk =
1

N

N∑
i=1

rik

The RBS score reflects relative performance, with scores
closer to 1 indicating superior performance compared to the
other model. By focusing on comparative judgments between
model outputs rather than absolute scores, the RBS method-
ology aims to offer a more dependable means of evaluating
text that necessitates subjective human judgment. Addition-
ally, this comparative framework facilitates the inclusion of
evaluative models such as GPT-4.

4. RESULTS

To systematically evaluate LLMs’ planning capacities, we
conduct experiments assessing model performance on a stan-
dardized benchmark of 24 home hazard scenarios across four
reasoning complexity levels.



4.1. LLM Selection

This experiment tests commercial models GPT-4, GPT-3.5
[34], Claude-2 [42], alongside open-source alternatives such
as LLama-2 [43], LLava [44], Vicuna [45], MiniGPT-4 [46],
and CodeLLama [47], on their ability to perform hazard plan-
ning using scene-informed one-shot prompts. The analysis
reveals that many open-source models struggle to effectively
utilize examples, with longer contexts leading to attention
drift and diminished scene comprehension. In contrast, GPT-
4, GPT-3.5, and Claude-2 demonstrate more reliable linkages
between examples and planning tasks. Both quantitative and
qualitative testing show that these commercial models main-
tain a stronger understanding despite the risk of drift. Con-
sequently, GPT-4, GPT-3.5, and Claude-2 have been selected
for further evaluation in hazard planning due to their superior
grounding capabilities.

4.2. Impact of The SAP Prompt

An experiment is conducted to evaluate the effect of the SAP
prompt on the quality of planning. As shown in Table B.1,
three LLMs, GPT-4, GPT-3.5, and Claude-2, are tested with
or without the SAP prompt on the benchmark scenarios across
four complexity levels. The RBS methodology is employed,
wherein models are compared pairwise for each scenario and
differentially ranked. Introducing the SAP prompt leads to
improved RBS scores for all three models compared to those
not, indicating enhanced planning capabilities. Notably, GPT-
4 with the SAP prompt achieves the highest overall RBS score
of 1.21, significantly outperforming GPT-4 without prompts
which has an RBS score of 2.04. An analysis of scenarios
at reasoning level 3, which involve interactions with chil-
dren, the elderly, and pets, shows that GPT-4 with the SAP
prompt substantially exceeds the performance of the second-
best model. This indicates that the prompt is particularly
valuable in complex, nuanced planning situations that re-
quire perspective-taking and consideration of potential out-
comes (for ablation studies, see Appendix B) [48, 49]. The
findings suggest that prompts directing models to thoroughly
contemplate relationships and iterative consequences signifi-
cantly boost latent planning abilities. By fostering better co-
ordination and foresight, these prompts improve deductions
when reasoning about multi-agent safety hazards.

4.3. LLM Evaluators

Experiments assess the feasibility of using LLMs, like GPT-4
and Claude-2, to score FSM plans and compare their rankings
with human evaluations, as shown in Appendix Table 9. The
models are tested with ranking FSM plans in pairs, as well as
in groups of 4 and 6. These rankings are then compared to ex-
pert human rank orders to measure accuracy. Tests find both
GPT-4 and Claude-2 could rank FSM pairs with 75.7% agree-
ment to human ranking, evidencing reliability for comparative

evaluation. However, their accuracy significantly decreases
when ranking groups of 4 or more FSMs. Table 10 and Fig.6
in Appendix B show that GPT-4 and Claude-2 align most
closely with human judgment when evaluating outputs gen-
erated by the models themselves. For example, GPT-4’s scor-
ing of its own FSMs closely matches expert rankings. This
demonstrates that LLMs can provide accurate comparative
assessments, particularly for outputs from their own model
family. The experiments highlight the potential of LLMs to
serve as evaluators that mimic human appraisals of planning
formalisms. By focusing on relative rather than absolute as-
sessments, variability is minimized.

4.4. Multi-Agent Improvement

A closed-loop experiment quantifies planning improvements
through iterative generation and evaluation between two
agents. GPT-3.5 with the SAP prompt serves as the gener-
ative model (LLM gen), and Claude-2 serves as the evalua-
tive model (LLM eval). LLM gen initially proposes an FSM,
which LLM eval scores and provides feedback on. Using this
feedback, LLM gen produces an improved FSM in the next
round. Testing shows the updated FSM surpasses the ini-
tial quality, achieving a higher RBS score after one iteration.
Appendix Table 11 shows the closed-loop FSM outperforms
GPT-4 with the SAP prompt, the previous top standalone per-
former. The feedback-improved output features more detailed
planning, boosting RBS scores. This demonstrates how two
weaker models can compensate for each other’s shortcomings
through collaboration. The results indicate interactive cycles
between LLMs enhance reasoning and planning by leveraging
their complementary strengths, surpassing individual model
capabilities.

5. CONCLUSION

This study marks an advancement in the field of situational
awareness-based planning using LLMs. New benchmarks, a
specialized dataset, and multi-agent strategies have improved
the planning capabilities of LLMs, better equipping them to
handle complex and unpredictable human-centric scenarios.
Looking ahead, further explorations will focus on expand-
ing datasets and refining model architectures to speed up rea-
soning, with a particular emphasis on evaluating end-to-end
VLMs to bridge the time-lag gap between simulated and real-
time environments. This research underscores the importance
of stimulating latent reasoning in LLMs and paves the way
for ethically sound and safe AI planning processes in practi-
cal applications.
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